
Python XML processing with
lxml

John W. Shipman
2014-09-02 11:23

Abstract

Describes the lxml package for reading and writing XML files with the Python programming
language.

This publication is available in Web form1 and also as a PDF document2. Please forward any
comments to john@nmt.edu.

This work is licensed under a 3 Creative Commons Attribution-NonCommercial
3.0 Unported License.

Table of Contents
1. Introduction: Python and XML ... 3
2. How ElementTree represents XML .. 4
3. Reading an XML document .. 5
4. Handling multiple namespaces ... 6

4.1. Glossary of namespace terms .. 6
4.2. The syntax of multi-namespace documents ... 8
4.3. Namespace maps .. 9

5. Creating a new XML document .. 9
6. Modifying an existing XML document ... 10
7. Features of the etree module ... 11

7.1. The Comment() constructor ... 11
7.2. The Element() constructor ... 11
7.3. The ElementTree() constructor ... 13
7.4. The fromstring() function: Create an element from a string 13
7.5. The parse() function: build an ElementTree from a file ... 14
7.6. The ProcessingInstruction() constructor ... 14
7.7. The QName() constructor ... 15
7.8. The SubElement() constructor ... 15
7.9. The tostring() function: Serialize as XML ... 16
7.10. The XMLID() function: Convert text to XML with a dictionary of id values 16

1 http://www.nmt.edu/~shipman/soft/pylxml/
2 http://www.nmt.edu/~shipman/soft/pylxml/pylxml.pdf
3 http://creativecommons.org/licenses/by-nc/3.0/

1Python XML processing with lxmlZoological Data Processing

About this document
This document has been generated with RenderX XEP.					Visit http://www.renderx.com/ to learn more about					RenderX family of software solutions for digital					typography.

http://www.nmt.edu/~shipman/soft/pylxml/
http://www.nmt.edu/~shipman/soft/pylxml/pylxml.pdf
http://creativecommons.org/licenses/by-nc/3.0/
http://www.nmt.edu/~shipman/soft/pylxml/
http://www.nmt.edu/~shipman/soft/pylxml/pylxml.pdf
http://creativecommons.org/licenses/by-nc/3.0/

8. class ElementTree: A complete XML document ... 17
8.1. ElementTree.find() ... 17
8.2. ElementTree.findall(): Find matching elements ... 17
8.3. ElementTree.findtext(): Retrieve the text content from an element 18
8.4. ElementTree.getiterator(): Make an iterator ... 18
8.5. ElementTree.getroot(): Find the root element ... 18
8.6. ElementTree.xpath(): Evaluate an XPath expression ... 18
8.7. ElementTree.write(): Translate back to XML .. 19

9. class Element: One element in the tree ... 19
9.1. Attributes of an Element instance .. 19
9.2. Accessing the list of child elements ... 20
9.3. Element.append(): Add a new element child .. 21
9.4. Element.clear(): Make an element empty ... 21
9.5. Element.find(): Find a matching sub-element .. 21
9.6. Element.findall(): Find all matching sub-elements ... 22
9.7. Element.findtext(): Extract text content ... 23
9.8. Element.get(): Retrieve an attribute value with defaulting .. 23
9.9. Element.getchildren(): Get element children .. 24
9.10. Element.getiterator(): Make an iterator to walk a subtree 24
9.11. Element.getroottree(): Find the ElementTree containing this element 26
9.12. Element.insert(): Insert a new child element ... 26
9.13. Element.items(): Produce attribute names and values ... 26
9.14. Element.iterancestors(): Find an element's ancestors ... 27
9.15. Element.iterchildren(): Find all children ... 27
9.16. Element.iterdescendants(): Find all descendants ... 28
9.17. Element.itersiblings(): Find other children of the same parent 28
9.18. Element.keys(): Find all attribute names ... 29
9.19. Element.remove(): Remove a child element .. 29
9.20. Element.set(): Set an attribute value .. 29
9.21. Element.xpath(): Evaluate an XPath expression .. 30

10. XPath processing .. 30
10.1. An XPath example .. 31

11. The art of Web-scraping: Parsing HTML with Beautiful Soup ... 32
12. Automated validation of input files .. 32

12.1. Validation with a Relax NG schema ... 32
12.2. Validation with an XSchema (XSD) schema .. 33

13. etbuilder.py: A simplified XML builder module ... 33
13.1. Using the etbuilder module .. 34
13.2. CLASS(): Adding class attributes .. 35
13.3. FOR(): Adding for attributes .. 36
13.4. subElement(): Adding a child element ... 36
13.5. addText(): Adding text content to an element ... 36

14. Implementation of etbuilder ... 36
14.1. Features differing from Lundh's original .. 36
14.2. Prologue .. 36
14.3. CLASS(): Helper function for adding CSS class attributes ... 37
14.4. FOR(): Helper function for adding XHTML for attributes ... 38
14.5. subElement(): Add a child element .. 38
14.6. addText(): Add text content to an element .. 38
14.7. class ElementMaker: The factory class ... 39
14.8. ElementMaker.__init__(): Constructor .. 40
14.9. ElementMaker.__call__(): Handle calls to the factory instance 42

Zoological Data ProcessingPython XML processing with lxml2

14.10. ElementMaker.__handleArg(): Process one positional argument 43
14.11. ElementMaker.__getattr__(): Handle arbitrary method calls 44
14.12. Epilogue ... 45
14.13. testetbuilder: A test driver for etbuilder .. 45

15. rnc_validate: A module to validate XML against a Relax NG schema 45
15.1. Design of the rnc_validate module ... 46
15.2. Interface to the rnc_validate module .. 46
15.3. rnc_validate.py: Prologue .. 46
15.4. RelaxException ... 48
15.5. class RelaxValidator ... 48
15.6. RelaxValidator.validate() ... 48
15.7. RelaxValidator.__init__(): Constructor .. 48
15.8. RelaxValidator.__makeRNG(): Find or create an .rng file 50
15.9. RelaxValidator.__getModTime(): When was this file last changed? 51
15.10. RelaxValidator.__trang(): Translate .rnc to .rng format 51

16. rnck: A standalone script to validate XML against a Relax NG schema 52
16.1. rnck: Prologue .. 52
16.2. rnck: main() ... 53
16.3. rnck: checkArgs() ... 54
16.4. rnck: usage() ... 55
16.5. rnck: fatal() ... 55
16.6. rnck: message() ... 55
16.7. rnck: validateFile() .. 56
16.8. rnck: Epilogue .. 56

1. Introduction: Python and XML
With the continued growth of both Python and XML, there is a plethora of packages out there that help
you read, generate, and modify XML files from Python scripts. Compared to most of them, the lxml4

package has two big advantages:

• Performance. Reading and writing even fairly large XML files takes an almost imperceptible amount
of time.

• Ease of programming. The lxml package is based on ElementTree, which Fredrik Lundh invented
to simplify and streamline XML processing.

lxml is similar in many ways to two other, earlier packages:

• Fredrik Lundh continues to maintain his original version of ElementTree5.
• xml.etree.ElementTree6 is now an official part of the Python library. There is a C-language

version called cElementTree which may be even faster than lxml for some applications.

However, the author prefers lxml for providing a number of additional features that make life easier.
In particular, support for XPath makes it considerably easier to manage more complex XML structures.

4 http://lxml.de/
5 http://effbot.org/zone/element-index.htm
6 http://docs.python.org/library/xml.etree.elementtree.html

3Python XML processing with lxmlZoological Data Processing

http://lxml.de/
http://effbot.org/zone/element-index.htm
http://docs.python.org/library/xml.etree.elementtree.html
http://lxml.de/
http://effbot.org/zone/element-index.htm
http://docs.python.org/library/xml.etree.elementtree.html

2. How ElementTree represents XML
If you have done XML work using the Document Object Model (DOM), you will find that the lxml
package has a quite different way of representing documents as trees. In the DOM, trees are built out
of nodes represented as Node instances. Some nodes are Element instances, representing whole elements.
Each Element has an assortment of child nodes of various types: Element nodes for its element children;
Attribute nodes for its attributes; and Text nodes for textual content.

Here is a small fragment of XHTML, and its representation as a DOM tree:

<p>To find out more, see the
standard.</p>

The above diagram shows the conceptual structure of the XML. The lxml view of an XML document,
by contrast, builds a tree of only one node type: the Element.

The main difference between the ElementTree view used in lxml, and the classical view, is the asso-
ciation of text with elements: it is very different in lxml.

An instance of lxml's Element class contains these attributes:

.tag
The name of the element, such as "p" for a paragraph or "em" for emphasis.

.text
The text inside the element, if any, up to the first child element. This attribute is None if the element
is empty or has no text before the first child element.

.tail
The text following the element. This is the most unusual departure. In the DOM model, any text
following an element E is associated with the parent of E; in lxml, that text is considered the “tail”
of E.

.attrib
A Python dictionary containing the element's XML attribute names and their corresponding values.
For example, for the element “<h2 class="arch" id="N15">”, that element's .attrib would
be the dictionary “{"class": "arch", "id": "N15"}”.

(element children)
To access sub-elements, treat an element as a list. For example, if node is an Element instance,
node[0] is the first sub-element of node. If node doesn't have any sub-elements, this operation
will raise an IndexError exception.

Zoological Data ProcessingPython XML processing with lxml4

You can find out the number of sub-elements using the len() function. For example, if node has
five children, len(node) will return a value of 5.

One advantage of the lxml view is that a tree is now made of only one type of node: each node is an
Element instance. Here is our XML fragment again, and a picture of its representation in lxml.

<p>To find out more, see the
standard.</p>

Notice that in the lxml view, the text ", see the\n" (which includes the newline) is contained in
the .tail attribute of the em element, not associated with the p element as it would be in the DOM
view. Also, the "." at the end of the paragraph is in the .tail attribute of the a (link) element.

Now that you know how XML is represented in lxml, there are three general application areas.

• Section 3, “Reading an XML document” (p. 5).

• Section 5, “Creating a new XML document” (p. 9).

• Section 6, “Modifying an existing XML document” (p. 10).

3. Reading an XML document
Suppose you want to extract some information from an XML document. Here's the general procedure:

1. You'll need to import the lxml package. Here is one way to do it:

from lxml import etree

2. Typically your XML document will be in a file somewhere. Suppose your file is named test.xml;
to read the document, you might say something like:

doc = etree.parse('test.xml')

The returned value doc is an instance of the ElementTree class that represents your XML document
in tree form.

5Python XML processing with lxmlZoological Data Processing

Once you have your document in this form, refer to Section 8, “class ElementTree: A complete
XML document” (p. 17) to learn how to navigate around the tree and extract the various parts of its
structure.

For other methods of creating an ElementTree, refer to Section 7, “Features of the etree mod-
ule” (p. 11).

4. Handling multiple namespaces
A namespace in XML is a collection of element and attribute names. For example, in the XHTML namespace
we find element names like body, link and h1, and attribute names like href and align.

For simple documents, all the element and attribute names in a single document may be in the namespace.
In general, however, an XML document may include element and attribute names from many namespaces.

• See Section 4.1, “Glossary of namespace terms” (p. 6) to familiarize yourself with the terminology.
• Section 4.2, “The syntax of multi-namespace documents” (p. 8) discusses how namespaces are rep-

resented in an XML file.

4.1. Glossary of namespace terms

4.1.1. URI: Universal Resource Identifier

Formally, each namespace is named by a URI or Universal Resource Identifier. Although a URI often looks
like a URL, there is an important difference:

• A URL (Universal Resource Locator) corresponds more or less to an actual Web page. If you paste a
URL into your browser, you expect to get a Web page of some kind.

• A URI is just a unique name that identifies a specific conceptual entity. If you paste it into a browser,
you may get a Web page or you may not; it is not required that the URI that defines a given namespace
is also a URL.

4.1.2. NSURI: Namespace URI

Not all URIs define namespaces.

The term NSURI, for NameSpace URI, is a URI that is used to uniquely identify a specific XML namespace.

Note
The W3C Recommendation Namespaces in XML 1.07 prefers the term namespace name for the more widely
used NSURI.

For example, here is the NSURI that identifies the “XHTML 1.0 Strict” dialect of XHTML:

http://www.w3.org/1999/xhtml

7 http://www.w3.org/TR/xml-names/

Zoological Data ProcessingPython XML processing with lxml6

http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/

4.1.3.The blank namespace

Within a given document, one set of element and attribute names may not be referred to a specific
namespace and its corresponding NSURI. These elements and attributes are said to be in the blank
namespace.

This is convenient for documents whose element and attribute names are all in the same namespace. It
is also typical for informal and experimental applications where the developer does not want to bother
defining an NSURI for the namespace, or hasn't gotten around to it yet.

For example, many XHTML pages use a blank namespace because all the names are in the same
namespace and because browsers don't need the NSURI in order to display them correctly.

4.1.4. Clark notation

Each element and attribute name in a document is related to a specific namespace and its corresponding
NSURI, or else it is in the blank namespace. In the general case, a document may specify the NSURI for
each namespace; see Section 4.2, “The syntax of multi-namespace documents” (p. 8).

Because the same name may occur in different namespaces within the same document, when processing
the document we must be able to distinguish them.

Once your document is represented as an ElementTree, the .tag attribute that specifies the element
name of an Element contains both the NSURI and the element name using Clark notation, named after
its inventor, James Clark8.

When the NSURI of an element is known, the .tag attribute contains a string of this form:

"{NSURI}name"

For example, when a properly constructed XHTML 1.0 Strict document is parsed into an ElementTree,
the .tag attribute of the document's root element will be:

"{http://www.w3.org/1999/xhtml}html"

Note
Clark notation does not actually appear in the XML source file. It is employed only within the Element-
Tree representation of the document.

For element and attribute names in the blank namespace, the Clark notation is just the name without
the “{NSURI}” prefix.

4.1.5. Ancestor

The ancestors of an element include its immediate parent, its parent's parent, and so forth up to the root
of the tree. The root node has no ancestors.

4.1.6. Descendant

The descendants of an element include its direct children, its childrens' children, and so on out to the
leaves of the document tree.

8 http://en.wikipedia.org/wiki/James_Clark_(programmer)

7Python XML processing with lxmlZoological Data Processing

http://en.wikipedia.org/wiki/James_Clark_(programmer)
http://en.wikipedia.org/wiki/James_Clark_(programmer)

4.2.The syntax of multi-namespace documents
An XML document's external form uses namespace prefixes to distinguish names from different
namespaces. Each prefix's NSURI must be defined within the document, except for the blank namespace
if there is one.

Here is a small fragment to give you the general idea:

<fo:inline font-style='italic' font-family='sans-serif'>
<xsl:copy-of select="$content"/>

</fo:inline>

The inline element is in the XSL-FO namespace, which in this document uses the namespace prefix
“fo:”. The copy-of element is in the XSLT namespace, whose prefix is “xsl:”.

Within your document, you must define the NSURI corresponding to each namespace prefix. This can
be done in multiple ways.

• Any element may contain an attribute of the form “xmlns:P="NSURI"”, where P is the namespace
prefix for that NSURI.

• Any element may contain attribute of the form “xmlns="NSURI"”. This defines the NSURI associated
with the blank namespace.

• If an element or attribute does not carry a namespace prefix, it inherits the NSURI of the closest an-
cestor element that does bear a prefix.

• Certain attributes may occur anywhere in any document in the “xml:” namespace, which is always
defined.

For example, any element may carry a “xml:id” attribute that serves to identify a unique element
within the document.

Here is a small complete XHTML file with all the decorations recommended by the W3C organization:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>My page title</title>
</head>
<body>
<h1>Hello world</h1>

</body>
</html>

The xmlns attribute of the html element specifies that all its descendant elements are in the XHTML
1.0 Strict namespace.

The xml:lang="en" attribute specifies that the document is in English.

Here is a more elaborate example. This is the root element of an XSLT stylesheet. Prefix “xsl:” is used
for the XSLT elements; prefix “fo:” is used for the XSL-FO elements; and a third namespace with prefix
“date:” is also included. This document does not use a blank namespace.

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Zoological Data ProcessingPython XML processing with lxml8

xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:date="http://exslt.org/dates-and-times">

4.3. Namespace maps
A namespace map is a Python dictionary that relates namespace prefixes to namespaces. The dictionary's
keys are the namespace prefixes and each related value is the namespace's name as an NSURI.

Namespace maps are used in several roles.

• When reading an XML file with multiple namespaces, you can use a namespace map in the process
of searching for and retrieving elements and attributes from an ElementTree. See, for example,
Section 9.5, “Element.find(): Find a matching sub-element” (p. 21).

• When creating a new XML document that has elements in multiple namespaces, you can use a
namespace map to specify what namespace prefixes will appear when the ElementTree is serialized
to XML form. See Section 7.2, “The Element() constructor” (p. 11) and Section 7.8, “The SubEle-
ment() constructor” (p. 15) for particulars.

For example, at the end of Section 4.2, “The syntax of multi-namespace documents” (p. 8) there is an
xsl:stylesheet start tag that defines xsl: as the prefix for the XSLT namespace, fo: for the XSL-
FO namespace, and date: for a date-and-time extension package. Here is a namespace map that describes
those same relationships of prefixes to NSURIs:

nsm = {"xsl": "http://www.w3.org/1999/XSL/Transform",
"fo": "http://www.w3.org/1999/XSL/Format",
"date": "http://exslt.org/dates-and-times"}

To define the NSURI of the blank namespace, use an entry whose key is None. For example, this
namespace map would define elements without a namespace as belonging to XHTML, and elements
with namespace prefix “xl:” belong to the XLink9 namespace:

nsm = {None: "http://www.w3.org/1999/xhtml",
"xl": "http://www.w3.org/1999/xlink"}

5. Creating a new XML document
If your program needs to write some output as an XML document, the lxml package makes this oper-
ation easy.

1. First import the lxml package. Here is one way:

from lxml import etree

2. Create the root element. For example, suppose you're creating a Web page; the root element is html.
Use the etree.Element() constructor to build that element.

page = etree.Element('html')

3. Next, use the etree.ElementTree() constructor to make a new document tree, using our html
element as its root:

9 http://en.wikipedia.org/wiki/XLink

9Python XML processing with lxmlZoological Data Processing

http://en.wikipedia.org/wiki/XLink
http://en.wikipedia.org/wiki/XLink

doc = etree.ElementTree(page)

4. The etree.SubElement() constructor is perfect for adding new child elements to our document.
Here's the code to add a head element, and then a body as element, as new children of the html
element:

headElt = etree.SubElement(page, 'head')
bodyElt = etree.SubElement(page, 'body')

5. Your page will need a title element child under the head element. Add text to this element by
storing a string in its .text attribute:

title = etree.SubElement(headElt, 'title')
title.text = 'Your page title here'

6. To supply attribute values, use keyword arguments to the SubElement() constructor. For example,
suppose you want a stylesheet link inside the head element that looks like this:

<link rel='stylesheet' href='mystyle.css' type='text/css'>

This code would do it:

linkElt = etree.SubElement(headElt, 'link', rel='stylesheet',
href='mystyle.css', type='text/css')

7. Continue building your new document using the various functions described in Section 7, “Features
of the etree module” (p. 11) and Section 9, “class Element: One element in the tree” (p. 19).

8. When the document is completely built, write it to a file using the ElementTree instance's .write()
method, which takes a file argument.

outFile = open('homemade.xml', 'w')
doc.write(outFile)

6. Modifying an existing XML document
If your program needs to read in an XML document, modify it, and write it back out, this operation is
straightforward with lxml.

1. Start by reading the document using the techniques from Section 3, “Reading an XML docu-
ment” (p. 5).

2. Modify the document tree by adding, deleting, or replacing elements, attributes, text, and other fea-
tures.

For example, suppose your program has a variable linkNode that contains an Element instance
representing an HTML “a” (hyperlink) element, and you want to change the value of its href attribute
to point to a different URL, such as http://www.nmt.edu/. This code would do it:

linkNode.attrib['href'] = 'http://www.nmt.edu/'

3. Finally, write the document back out to a file as described in Section 5, “Creating a new XML docu-
ment” (p. 9).

Zoological Data ProcessingPython XML processing with lxml10

7. Features of the etree module
The etree contains numerous functions and class constructors.

7.1.The Comment() constructor
To create a comment node, use this constructor:

etree.Comment(text=None)

text
The text to be placed within the comment. When serialized back into XML form, this text will be
preceded by “<!-- ” and followed by “ -->”. Note that one space will be added around each
end of the text you supply.

The return value is an instance of the Comment class. Use the .append() method on the parent element
to place the comment into your document.

For example, suppose bodyElt is an HTML body element. To add a comment under this element
containing string s, you would use this code:

newComment = etree.Comment(s)
bodyElt.append(newComment)

7.2.The Element() constructor
This constructor creates and returns a new Element instance.

etree.Element(tag, attrib={}, nsmap=None, **extras)

tag
A string containing the name of the element to be created.

attrib
A dictionary containing attribute names and values to be added to the element. The default is to
have no attributes.

nsmap
If your document contains multiple XML namespaces, you can supply a namespace map that defines
the namespace prefixes you would like to use when this document is converted to XML. See Sec-
tion 4.3, “Namespace maps” (p. 9).

If you supply this argument, it will also apply to all descendants of the created node, unless the
descendant node supplies a different namespace map.

extras
Any keyword arguments of the form name=value that you supply to the constructor are added
to the element's attributes. For example, this code:

newReed = etree.Element('reed', pitch='440', id='a4')

will produce an element that looks like this:

<reed pitch='440' id='a4'/>

11Python XML processing with lxmlZoological Data Processing

Here is an example of creation of a document with multiple namespaces using the nsmap keyword ar-
gument.

#!/usr/bin/env python
import sys
from lxml import etree as et

HTML_NS = "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
XSL_NS = "http://www.w3.org/1999/XSL/Transform"
NS_MAP = {None: HTML_NS,

"xsl": XSL_NS}

rootName = et.QName(XSL_NS, 'stylesheet')
root = et.Element(rootName, nsmap=NS_MAP)
sheet = et.ElementTree(root)

top = et.SubElement(root, et.QName(XSL_NS, "template"), match='/')
html = et.SubElement(top, et.QName(HTML_NS, "html"))
head = et.SubElement(html, "head")
title = et.SubElement(head, "title")
title.text = "Heading title"
body = et.SubElement(html, "body")
h1 = et.SubElement(body, "h1")
h1.text = "Body heading"
p = et.SubElement(body, "p")
p.text = "Paragraph text"
sheet.write(sys.stdout, pretty_print=True)

When this root element is serialized into XML, it will look something like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<xsl:template match="/">
<html>
<head>
<title>Heading title</title>

</head>
<body>
<h1>Body heading</h1>
<p>Paragraph text</p>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

There is one minor pathology of this constructor. If you pass in a pre-constructed dictionary as the at-
trib argument, and you also supply keyword arguments, the values of the keyword arguments will
be added into that dictionary as if you had used the .update() method on the attrib dictionary.
Here is a conversational example showing this side effect:

>>> from lxml import etree
>>> d = { 'name': 'Clem', 'clan': 'bozo' }
>>> clownElt = etree.Element('clown', d, attitude='bad')
>>> d

Zoological Data ProcessingPython XML processing with lxml12

{'clan': 'bozo', 'attitude': 'bad', 'name': 'Clem'}
>>> etree.tostring(clownElt)
'<clown clan="bozo" attitude="bad" name="Clem"/>'
>>>

7.3.The ElementTree() constructor
To create a new, empty document, use this constructor. It returns a new ElementTree instance.

etree.ElementTree(element=None, file=None)

element
An Element instance to be used as the root element.

file
To construct an ElementTree that represents an existing file, pass either a writeable file object,
or a string containing the name of the file. Do not use the element argument; if you do, the file
argument will be ignored.

For example, to transform a file named balrog.xml into an ElementTree, use this statement:

balrogTree = etree.ElementTree(file='balrog.xml')

Exceptions that can be raised by this constructor include:

IOError
If the file is nonexistent or unreadable.

etree.XMLSyntaxError
If the file is readable, but its contents are not well-formed XML.

The returned exception value has an .error_log attribute that you can display to find out where
in the file errors occurred. Here is an example:

>>> try:
... bad = etree.fromstring("<a>\n<<oops>\n")
... except etree.XMLSyntaxError, detail:
... pass
...
>>> detail
<etree.XMLSyntaxError instance at 0xb7eba10c>
>>> detail.error_log
<string>:2:FATAL:PARSER:ERR_NAME_REQUIRED: StartTag: invalid element
name
<string>:3:FATAL:PARSER:ERR_TAG_NAME_MISMATCH: Opening and ending tag
mismatch: oops line 2 and a
<string>:3:FATAL:PARSER:ERR_TAG_NOT_FINISHED: Premature end of data in
tag a line 1
>>>

7.4.The fromstring() function: Create an element from a string
You can create an element or tree of elements from a string containing XML with this function; it returns
a new Element instance representing all that XML.

13Python XML processing with lxmlZoological Data Processing

etree.fromstring(s)

where s is a string.

Here's an example:

>>> milne = '''<monster name='Heffalump'>
... <trail>Woozle</trail>
... <eeyore mood='boggy'/>
... </monster>'''
>>> doc = etree.fromstring(milne)
>>> print etree.tostring(doc)
<monster name="Heffalump">
<trail>Woozle</trail>
<eeyore mood="boggy"/>

</monster>
>>>

7.5.The parse() function: build an ElementTree from a file
The quickest way to convert an XML file into an ElementTree is to use this function:

etree.parse(source)

where source is the name of the file, or a file object containing the XML. If the file is well-formed,
the function returns an ElementTree instance.

Exceptions raised include:

IOError
The file is nonexistent or not readable.

etree.XMLSyntaxError
The file is readable, but does not contain well-formed XML. The returned exception contains an
.error_log attribute that you can print to see where the error occurred. For an example of the
display of the error_log, see Section 7.3, “The ElementTree() constructor” (p. 13).

7.6.The ProcessingInstruction() constructor
To add an XML processing instruction to your document, use this constructor. It returns a new Pro-
cessingInstruction instance; to place this into a tree, pass that instance to the parent element's
.append() method.

etree.ProcessingInstruction(target, text=None):

target
A string containing the target portion of the processing instruction.

text
An optional string containing the rest of the processing instruction. The default value is empty.

Here's an example:

pi = etree.ProcessingInstruction('decor', 'danish,modern,ducksOnWall')

When converted back to XML, this processing instruction would look like this:

Zoological Data ProcessingPython XML processing with lxml14

<?decor danish,modern,ducksOnWall?>

7.7.The QName() constructor
When you are working with multiple namespaces, the QName object is useful for combining the
“namespace URI” part with the “local name” part. A QName instance can be used for the name part of
attributes that are in a different namespace than their containing element.

Although it is not legal in XML element names, there is a convention called “Clark notation” (after
James Clark) that combines these two parts in a string of this form:

{nsURI}local

To construct a new QName instance, use a statement of this general form:

etree.QName(text, tag=none)

• If the fully qualified element name is already in Clark notation, call the QName constructor with this
argument alone.

• If you would like to pass the namespace URI and the local name separately, call QName with the
namespace URI as the text argument, and the local name as the tag argument.

Here are two examples for creating a QName instance representing a qualified name in the XSLT
namespace with a local name of template:

• In Clark notation:

qn = etree.QName("{http://www.w3.org/1999/XSL/Transform}template")

• With the namespace URI and local name supplied separately:

qn = etree.QName("http://www.w3.org/1999/XSL/Transform", "template")

7.8.The SubElement() constructor
This is a handy constructor that accomplishes the two basic operations in adding an element to a tree:

• creating a new Element instance, and
• adding that new Element as the next child of its parent element.

Here is the general form:

SubElement(parent, tag, attrib={}, nsmap=None, **extras):

The first argument, parent, is the Element instance under which the newly created Element instance
is to be added as its next child. The tag, attrib, nsmap, and **extras arguments work exactly the
same as they do in the call to Element() described in Section 7.2, “The Element() constructor” (p. 11).

The return value is the newly constructed Element.

Here's an example. Suppose you want to build this XML:

<state name="New Mexico">
<county name="Socorro">
<ppl name="Luis Lopez"/>

15Python XML processing with lxmlZoological Data Processing

</county>
</state>

Here's the code to build it, and then display it, interactively:

>>> st=etree.Element('state', name='New Mexico')
>>> co=etree.SubElement(st, 'county', name='Socorro')
>>> ppl=etree.SubElement(co, 'ppl', name='Luis Lopez')
>>> print etree.tostring(st)
<state name="New Mexico"><county name="Socorro"><ppl name="Luis Lopez"/>
</county></state>
>>>

7.9.The tostring() function: Serialize as XML
To convert an Element and its content back to XML, use a function call of this form:

etree.tostring(elt, pretty_print=False, encoding=None)

where elt is an Element instance. The function returns a string containing the XML. For an example,
see Section 7.8, “The SubElement() constructor” (p. 15).

If you set the optional pretty_print argument to True, the method will attempt to insert line breaks
to keep line lengths short where possible.

To output Unicode, use the keyword argument encoding=unicode.

7.10.The XMLID() function: Convert text to XML with a dictionary of id
values

To convert XML in the form of a string into an Element structure, use Section 7.4, “The fromstring()
function: Create an element from a string” (p. 13). However, there is a similar function named
etree.XMLID() that does this and also provides a dictionary that allows you to find elements in a
tree by their unique id attribute values.

The XML standard stipulates that any element in any document can have an id attribute, but each value
of this attribute must be unique within the document. The intent of this feature is that applications can
refer to any element using its id value.

Here is the general form for this function:

etree.XMLID(text)

The return value is a tuple (E, D), where:

• E is the converted XML as an Element instance rooting the converted tree, just as if you had called
etree.fromstring(text).

• D is a dictionary whose keys are the values of id attributes in the converted tree, and each correspond-
ing value is the Element instance that carried that id value.

Here's a small example script:

#!/usr/bin/env python
from lxml import etree

Zoological Data ProcessingPython XML processing with lxml16

SOURCE = '''<dog id="Fido">
Woof!
<cat id="Fluff">Mao?</cat>
<rhino id="ZR"/>
</dog>'''
tree, idMap = etree.XMLID(SOURCE)

for id in sorted(idMap.keys()):
elt = idMap[id].text or "(none)"
print "Tag {0}, text is '{1}'".format(id, elt.strip())

And its output:

Tag Fido, text is 'Woof!'
Tag Fluff, text is 'Mao?'
Tag ZR, text is '(none)'

8. class ElementTree: A complete XML document
Once you have used the etree.ElementTree constructor to instantiate an XML document, you can
use these methods on that instance.

8.1. ElementTree.find()

ET.find(path[, namespaces=D])

This method is used to find a specific single element in the document. It is essentially equivalent to
calling the .find() method on the document's root element; see Section 9.5, “Element.find(): Find
a matching sub-element” (p. 21).

For example, if doc is an ElementTree instance, this call:

doc.find('h1')

is equivalent to:

doc.getroot().find('h1')

8.2. ElementTree.findall(): Find matching elements
Given some ElementTree instance ET, this method will return a sequence of zero or more Elements
that match the pattern specified by the path argument.

ET.findall(path[, namespaces=N])

This method works exactly the same as calling the .findall() method on the document's root element.
See Section 9.6, “Element.findall(): Find all matching sub-elements” (p. 22).

17Python XML processing with lxmlZoological Data Processing

8.3. ElementTree.findtext(): Retrieve the text content from an ele-
ment

To retrieve the text inside some element, use this method on some ElementTree instance ET:

ET.findtext(path[, default=None][, namespaces=N])

This method is essentially the same as calling the .findtext() method on the document's root element;
see Section 9.7, “Element.findtext(): Extract text content” (p. 23).

8.4. ElementTree.getiterator(): Make an iterator
In many applications, you will want to visit every element in a document, or perhaps to retrieve inform-
ation from all the tags of a certain kind. This method, on some ElementTree instance ET, will return
an iterator that visits all matching tags.

ET.getiterator(tag=None)

If you omit the argument, you will get an iterator that generates every element in the tree, in document
order.

If you want to visit only tags with a certain name, pass that name as the argument.

Here are some examples. In these examples, assume that page is an ElementTree instance that contains
an XHTML page. The first example would print every tag name in the page, in document order.

for elt in page.getiterator():
print elt.tag

The second example would look at every div element in the page, and for those that have a class at-
tribute, it prints those attributes.

for elt in page.getiterator('div'):
if elt.attrib.has_key('class'):

print elt.get('class')

8.5. ElementTree.getroot(): Find the root element
To obtain the root element of a document contained in an ElementTree instance ET, use this method
call:

ET.getroot()

The return value will normally be the Element instance at the root of the tree. However, if you have
created your ElementTree instance without specifying either a root element or an input file, this
method will return None.

8.6. ElementTree.xpath(): Evaluate an XPath expression
For an ElementTree instance ET, use this method call to evaluate an XPath expression s, using the
tree's root element as the context node.

ET.xpath(s)

Zoological Data ProcessingPython XML processing with lxml18

This methods returns the result of the XPath expression. For a general discussion of XPath, see Section 10,
“XPath processing” (p. 30).

8.7. ElementTree.write():Translate back to XML
To serialize (convert to XML) the content of a document contained in some ElementTree instance ET,
use this method call:

ET.write(file, pretty_print=False)

You must supply a writeable file object, or the name of a file to be written. If you set argument
pretty_print=True, the method will attempt to fold long lines and indent the XML for legibility.

For example, if you have an ElementTree instance in a variable page containing an XHTML page,
and you want to write it to the standard output stream, this statement would do it:

import sys
page.write(sys.stdout)

9. class Element: One element in the tree
Each XML element is represented by an instance of the Element class.

• See Section 9.1, “Attributes of an Element instance” (p. 19) for attributes of an Element instance in
the Python sense, as opposed to XML attributes.

• See Section 9.2, “Accessing the list of child elements” (p. 20) for the various ways to access the element
children of an element.

• The various methods on Element instances follow in alphabetical order, starting with Section 9.3,
“Element.append(): Add a new element child” (p. 21).

9.1. Attributes of an Element instance
Each instance of the Element class has these attributes.

.attrib
A dictionary containing the element's attributes. The keys are the attribute names, and each corres-
ponding value is the attribute's value.

.base
The base URI from an xml:base attribute that this element contains or inherits, if any; None oth-
erwise.

.prefix
The namespace prefix of this element, if any, otherwise None.

.sourceline
The line number of this element when parsed, if known, otherwise None.

.tag
The element's name.

.tail
The text following this element's closing tag, up to the start tag of the next sibling element. If there
was no text there, this attribute will have the value None.

19Python XML processing with lxmlZoological Data Processing

This way of associating text with elements is not really typical of the way most XML processing
models work; see Section 2, “How ElementTree represents XML” (p. 4).

.text
The text inside the element, up to the start tag of the first child element. If there was no text there,
this attribute will have the value None.

9.2. Accessing the list of child elements
In many ways, an Element instance acts like a Python list, with its XML child elements acting as the
members of that list.

You can use the Python len() function to determine how many children an element has. For example,
if node is an Element instance with five element children, len(node) will return the value 5.

You can add, replace, or delete children of an element using regular Python list operations. For example,
if an Element instance node has three child elements, node[0] is the first child, and node[2] is the
third child.

In the examples that follow, assume that E is an Element instance.

• E[i] returns the child element of E at position i, if there is one. If there is no child element at that
position, this operation raises an IndexError exception.

• E[i:j] returns a list of the child elements between positions i and j.

For example, node[2:4] returns a list containing the third and fourth children of node.

• You can replace one child of an element E with a new element c using a statement of this form:

E[i] = c

If i is not the position of an existing child, this operation will raise an IndexError.

• You can replace a sequence of adjacent children of an element E using slice assignment:

E[i:j] = seq

where seq is a sequence of Element instances.

If the slice [i:j] does not specify an existing set of children, this operation will raise an IndexError
exception.

• You can delete one child of an element like this:

del E[i]

where i is the index of that child.

• You can delete a slice out of the list of element children like this:

del E[i:j]

• You can iterate over the children of an element with a for loop. For example, if node is an Element
instance, this code would print the tags of all its children:

for kid in node:
print kid.tag

Not all children of an element are themselves elements.

Zoological Data ProcessingPython XML processing with lxml20

• Processing instructions are instances of class etree._ProcessingInstruction.
• Comments are instances of class etree._Comment.

If you need to test whether a given child node is a processing instruuction or a comment, you can use
Python's built-in function isinstance(I, C), which tests whether an object I is an instance of a class
or subclass of class C.

For instance, to test whether node is a comment, you can use this test, which returns True if node is
a comment, False otherwise.

issubclass(node, etree._Comment)

9.3. Element.append(): Add a new element child
To add a new child c to an element E, use this method:

E.append(c)

You can use this method to add Comment and ProcessingInstruction instances as children of an
element, as well as Element instances.

Here is a conversational example:

>>> st = etree.Element("state", name="New Mexico")
>>> etree.tostring(st)
'<state name="New Mexico"/>'
>>> co = etree.Element("county", name="Socorro")
>>> st.append(co)
>>> etree.tostring(st)
'<state name="New Mexico"><county name="Socorro"/></state>'
>>> rem = etree.Comment("Just another day in paradise.")
>>> st.append(rem)
>>> etree.tostring(st)
'<state name="New Mexico"><county name="Socorro"/><!-- Just another day in
paradise. --></state>'
>>>

9.4. Element.clear(): Make an element empty
Calling the .clear() method on an Element instance removes all its content:

• All values are removed from the .attrib dictionary.
• The .text and .tail attributes are both set to None.
• Any child elements are deleted.

9.5. Element.find(): Find a matching sub-element
You can search for sub-elements of an Element instance E using this method call:

E.find(path[, namespaces=D])

This method searches the Element and its descendants for a single element that fits the pattern described
by the path argument.

21Python XML processing with lxmlZoological Data Processing

• If there is exactly one matching element, this method returns that element as an Element instance.
• If there are multiple matching elements, the method returns the one that appears first in document

order.
• If there are no matching elements, it returns None.

The path argument is a string describing the element for which you are searching. Possible values in-
clude:

"tag"
Find the first child element whose name is "tag".

"tag1/tag2/.../tagn"
Find the first child element whose name is tag1; then, under that child element, find its first child
named tag2; and so forth.

For example, if node is an Element instance that has an element child with a tag "county", and that
child in turn has an element child with tag "seat", this expression will return the Element correspond-
ing to the "seat" element:

node.find("county/seat")

The optional namespaces argument is a namespace map; see Section 4.3, “Namespace maps” (p. 9).
If supplied, this map is used to interpret namespace prefixes in the path argument.

For example, suppose you have an element someNode, and you want to find a child element named
roundtable in the namespace named http://example.com/mphg/, and under that you want to
find a child element named knight in the namespace named http://example.org/sirs/ns/.
This call would do it:

nsd = {'mp': 'http://example.com/mphg/',
'k': 'http://example.org/sirs/ns/'}

someNode.find('mp:roundtable/k:knight', namespaces=nsd}

Note that the namespace prefixes you define in this way do not need to have any particular value, or
to match the namespace prefixs that might be used for these NSURIs in some document's external form.

Warning
The namespaces keyword argument to the .find() method is available only for version 2.3.0 or later
of etree.

9.6. Element.findall(): Find all matching sub-elements
This method returns a list of descendants of the element that match a pattern described by the path
argument.

E.findall(path[, namespaces=N])

The way that the path argument describes the desired set of nodes works the same ways as the path
argument described in Section 9.5, “Element.find(): Find a matching sub-element” (p. 21).

For example, if an article element named root has zero or more children named section, this call
would set sectionList to a list containing Element instances representing those children.

sectionList = root.findall('section')

Zoological Data ProcessingPython XML processing with lxml22

The optional namespaces keyword argument allows you to specify a namespace map. If supplied,
this namespace map is used to interpret namespace prefixes in the path; see Section 9.5, “Ele-
ment.find(): Find a matching sub-element” (p. 21) for details.

Warning
The namespaces keyword argument is available only since release 2.3.0 of lxml.etree.

9.7. Element.findtext(): Extract text content
To find the text content inside a specific element, call this method, where E is some ancestor of that
element:

E.findtext(path, default=None, namespaces=N)

The path argument specifies the desired element in the same way as does the path argument in Sec-
tion 9.5, “Element.find(): Find a matching sub-element” (p. 21).

• If any descendants of E exist that match the given path, this method returns the text content of the
first matching element.

• If the there is at least one matching element but it has no text content, the returned value will be the
empty string.

• If no elements match the specified path, the method will return None, or the value of the default=
keyword argument if you provided one.

Here's a conversational example.

>>> from lxml import etree
>>> node=etree.fromstring('<a>bumear<c/>')
>>> node.findtext('b')
'bum'
>>> node.findtext('c')
''
>>> node.findtext('c', default='Huh?')
''
>>> print node.findtext('x')
None
>>> node.findtext('x', default='Huh?')
'Huh?'

The optional namespaces keyword argument allows you to specify namespace prefixes for multi-
namespace documents; for details, see Section 9.5, “Element.find(): Find a matching sub-ele-
ment” (p. 21).

9.8. Element.get(): Retrieve an attribute value with defaulting
There are two ways you can try to get an attribute value from an Element instance. See also the .attrib
dictionary in Section 9.1, “Attributes of an Element instance” (p. 19).

The .get() method on an Element instance also attempts to retrieve an attribute value. The advantage
of this method is that you can provide a default value that is returned if the element in question does
not actually have an attribute by the given name.

23Python XML processing with lxmlZoological Data Processing

Here is the general form, for some Element instance E.

E.get(key, default=None)

The key argument is the name of the attribute whose value you want to retrieve.

• If E has an attribute by that name, the method returns that attribute's value as a string.
• If E has no such attribute, the method returns the default argument, which itself has a default value

of None.

Here's an example:

>>> from lxml import etree
>>> node = etree.fromstring('<mount species="Jackalope"/>')
>>> print node.get('species')
Jackalope
>>> print node.get('source')
None
>>> print node.get('source', 'Unknown')
Unknown
>>>

9.9. Element.getchildren(): Get element children
For an Element instance E, this method returns a list of all E's element children:

E.getchildren()

Here's an example:

>>> xml = '''<corral><horse n="2"/><cow n="17"/>
... <cowboy n="2"/></corral>'''
>>> pen = etree.fromstring(xml)
>>> penContents = pen.getchildren()
>>> for content in penContents:
... print "%-10s %3s" % (content.tag, content.get("n", "0"))
...
horse 2
cow 17
cowboy 2
>>>

9.10. Element.getiterator(): Make an iterator to walk a subtree
Sometimes you want to walk through all or part of a document, looking at all the elements in document
order. Similarly, you may want to walk through all or part of a document and look for all the occurrences
of a specific kind of element.

The .getiterator() method on an Element instance produces a Python iterator that tells Python
how to visit elements in these ways. Here is the general form, for an Element instance E:

E.getiterator(tag=None)

Zoological Data ProcessingPython XML processing with lxml24

• If you omit the argument, you will get an iterator that visits E first, then all its element children and
their children, in a preorder traversal of that subtree.

• If you want to visit only elements with a certain tag name, pass the desired tag name as the argument.

Preorder traversal of a tree means that we visit the root first, then the subtrees from left to right (that
is, in document order). This is also called a depth-first traversal: we visit the root, then its first child,
then its first child's first child, and so on until we run out of descendants. Then we move back up to the
last element with more children, and repeat.

Here is an example showing the traversal of an entire tree. First, a diagram showing the tree structure:

A preorder traversal of this tree goes in this order: a, b, c, d, e.

>>> xml = '''<a><c/><d/><e/>'''
>>> tree = etree.fromstring(xml)
>>> walkAll = tree.getiterator()
>>> for elt in walkAll:
... print elt.tag,
...
a b c d e
>>>

In this example, we visit only the bird nodes.

>>> xml = '''<bio>
... <bird type="Bushtit"/>
... <butterfly type="Mourning Cloak"/>
... <bird type="Mew Gull"/>
... <group site="Water Canyon">
... <snake type="Sidewinder"/>
... <bird type="Verdin"/>
... </group>
... <bird type="Pygmy Nuthatch"/>
... </bio>'''
>>> root = etree.fromstring(xml)
>>> for elt in root.getiterator('bird'):
... print elt.get('type', 'Unknown')
...
Bushtit
Mew Gull
Verdin
Pygmy Nuthatch
>>>

Note in the above example that the iterator visits the Verdin element even though it is not a direct child
of the root element.

25Python XML processing with lxmlZoological Data Processing

9.11. Element.getroottree(): Find the ElementTree containing this
element

For any Element instance E, this method call returns the ElementTree instance that contains E:

E.getroottree()

9.12. Element.insert(): Insert a new child element
Use the .insert() method on an Element instance E to add a new element child elt in an arbitrary
position. (To append a new element child at the last position, see Section 9.3, “Element.append():
Add a new element child” (p. 21).)

E.insert(index, elt)

The index argument specifies the position into which element elt is inserted. For example, if you
specify index 0, the new child will be inserted before any other children of E.

The lxml module is quite permissive about the values of the index argument: if it is negative, or
greater than the position of the last existing child, the new child is added after all existing children.

Here is an example showing insertions at positions 0 and 2.

>>> node = etree.fromstring('<a><c0/><c1/><c2/>')
>>> newKid = etree.Element('c-1', laugh="Hi!")
>>> node.insert(0, newKid)
>>> etree.tostring(node)
'<a><c-1 laugh="Hi!"/><c0/><c1/><c2/>'
>>> newerKid = etree.Element('cn')
>>> node.insert(2, newerKid)
>>> etree.tostring(node)
'<a><c-1 laugh="Hi!"/><c0/><cn/><c1/><c2/>'
>>>

9.13. Element.items(): Produce attribute names and values
For any Element instance E, the .items() method returns the attributes as if they were a dictionary
and you had called the .items() method on that dictionary: the result is a list of two-element tuples
(name, value), one for each XML attribute of E.

Attribute values are returned in no particular order.

Here's an example.

>>> node = etree.fromstring("<event time='1830' cost='3.50'
rating='nc-03'/>")
>>> node.items()
[('cost', '3.50'), ('time', '1830'), ('rating', 'nc-03')]
>>>

Zoological Data ProcessingPython XML processing with lxml26

9.14. Element.iterancestors(): Find an element's ancestors
The ancestors of an element are its parent, its parent's parent, and so on up to the root element of the
tree. For any Element instance E, this method returns an iterator that visits E's ancestors in reverse
document order:

E.iterancestors(tag=None)

If you omit the argument, the iterator will visit all ancestors. If you wish to visit only ancestors with a
specific tag name, pass that tag name as an argument.

Examples:

>>> xml = '''<class sci='Aves' eng='Birds'>
... <order sci='Strigiformes' eng='Owls'>
... <family sci='Tytonidae' eng='Barn-Owls'>
... <genus sci='Tyto'>
... <species sci='Tyto alba' eng='Barn Owl'/>
... </genus>
... </family>
... </order>
... </class>'''
>>> root = etree.fromstring(xml)
>>> barney = root.xpath('//species') [0]
>>> print "%s: %s" % (barney.get('sci'), barney.get('eng'))
Tyto alba: Barn Owl
>>> for ancestor in barney.iterancestors():
... print ancestor.tag,
genus family order class
>>> for fam in barney.iterancestors('family'):
... print "%s: %s" % (fam.get('sci'), fam.get('eng'))
Tytonidae: Barn-Owls

9.15. Element.iterchildren(): Find all children
For an Element instance E, this method returns an iterator that iterates over all of E's children.

E.iterchildren(reversed=False, tag=None)

Normally, the resulting iterator will visit the children in document order. However, if you pass re-
versed=True, it will visit them in the opposite order.

If you want the iterator to visit only children with a specific name N, pass an argument tag=N.

Example:

>>> root=et.fromstring("<mom><aaron/><betty/><clarence/><dana/></mom>")
>>> for kid in root.getchildren():
... print kid.tag
aaron
betty
clarence
dana
>>> for kid in root.iterchildren(reversed=True):
... print kid.tag

27Python XML processing with lxmlZoological Data Processing

...
dana
clarence
betty
aaron
>>>

9.16. Element.iterdescendants(): Find all descendants
The term descendants refers to an element's children, their children, and so on all the way to the leaves
of the document tree.

For an Element instance E, this method returns an iterator that visits all of E's descendants in document
order.

E.iterdescendants(tag=None)

If you want the iterator to visit only elements with a specific tag name N, pass an argument tag=N.

Example:

>>> xml = '''<root>
... <grandpa>
... <dad>
... <yuo/>
... </dad>
... </grandpa>
... </root>'''
>>> root = etree.fromstring(xml)
>>> you = root.xpath('.//yuo')[0]
>>> for anc in you.iterancestors():
... print anc.tag,
dad grandpa root
>>>

9.17.Element.itersiblings(): Find other children of the same parent
For any Element instance E, this method returns an iterator that visits all of E's siblings, that is, the
element children of its parent, in document order, but omitting E.

E.itersiblings(preceding=False)

If the preceding argument is false, the iterator will visit the siblings following E in document order.
If you pass preceding=True, the iterator will visit the siblings that precede E in document order.

Example:

>>> root=etree.fromstring(
... "<mom><aaron/><betty/><clarence/><dana/></mom>")
>>> betty=root.find('betty')
>>> for sib in betty.itersiblings(preceding=True):
... print sib.tag
...
aaron

Zoological Data ProcessingPython XML processing with lxml28

>>> for sib in betty.itersiblings():
... print sib.tag
...
clarence
dana
>>>

9.18. Element.keys(): Find all attribute names
For any Element instance E, this method returns a list of the element's XML attribute names, in no
particular order.

E.keys()

Here's an example:

>>> node = etree.fromstring("<event time='1830' cost='3.50'
rating='nc-03'/>")
>>> node.keys()
['time', 'rating', 'cost']
>>>

9.19. Element.remove(): Remove a child element
To remove an element child C from an Element instance E, use this method call.

E.remove(C)

If C is not a child of E, this method will raise a ValueError exception.

9.20. Element.set(): Set an attribute value
To create or change an attribute named A to value V in an Element instance E, use this method:

E.set(A, V)

Here's an example.

>>> node = etree.Element('div', id='u401')
>>> etree.tostring(node)
'<div id="u401"/>'
>>> node.set('class', 'flyer')
>>> etree.tostring(node)
'<div id="u401" class="flyer"/>'
>>> node.set('class', 'broadside')
>>> etree.tostring(node)
'<div id="u401" class="broadside"/>'
>>>

This method is one of two ways to create or change an attribute value. The other method is to store
values into the .attrib dictionary of the Element instance.

29Python XML processing with lxmlZoological Data Processing

9.21. Element.xpath(): Evaluate an XPath expression
To evaluate an XPath expression s using some Element instance E as the context node:

E.xpath(s[, namespaces=N][, var=value][, ...])

For a general discussion of the use of XPath, see Section 10, “XPath processing” (p. 30).

s
An XPath expression to be evaluated.

N
A namespace map that relates namespace prefixes to NSURIs; see Section 4.3, “Namespace
maps” (p. 9). The namespace map is used to interpret namespace prefixes in the XPath expression.

var=value
You may use additional keyword arguments to define the values of XPath variables to be used in
the evaluation of s. For example, if you pass an argument count=17, the value of variable $count
in the XPath expression will be 17.

The returned value may be any of:

• A list of zero or more selected Element instances.
• A Python bool value for true/false tests.
• A Python float value for numeric results.
• A string for string results.

10. XPath processing
One of the most significant advantages of the lxml package over the other ElementTree-style packages
is its support for the full XPath language. XPath expressions give you a much more powerful mechanism
for selecting and retrieving parts of a document, compared to the relatively simple “path” syntax used
in Section 8.1, “ElementTree.find()” (p. 17).

If you are not familiar with XPath, see these sources:

• XSLT reference10, specifically the section entitled “XPath reference”11.
• The standard, XML Path Language (XPath), Version 1.012.

Keep in mind that every XPath expression is evaluated using three items of context:

• The context node is the starting point for any operations whose meaning is relative to some point in
the tree.

• The context size is the number of elements that are children of the context node's parent, that is, the
context node and all its siblings.

• The context position is the context node's position relative to its siblings, counting the first sibling as
position 1.

You can evaluate an XPath expression s by using the .xpath(s) method on either an Element instance
or an ElementTree instance. See Section 9.21, “Element.xpath(): Evaluate an XPath expres-
sion” (p. 30) and Section 8.6, “ElementTree.xpath(): Evaluate an XPath expression” (p. 18).

10 http://www.nmt.edu/tcc/help/pubs/xslt/
11 http://www.nmt.edu/tcc/help/pubs/xslt/xpath-sect.html
12 http://www.w3.org/TR/xpath

Zoological Data ProcessingPython XML processing with lxml30

http://www.nmt.edu/tcc/help/pubs/xslt/
http://www.nmt.edu/tcc/help/pubs/xslt/xpath-sect.html
http://www.w3.org/TR/xpath
http://www.nmt.edu/tcc/help/pubs/xslt/
http://www.nmt.edu/tcc/help/pubs/xslt/xpath-sect.html
http://www.w3.org/TR/xpath

Depending on the XPath expression you use, these .xpath() methods may return one of several kinds
of values:

• For expressions that return a Boolean value, the .xpath() method will return True or False.

• Expressions with a numeric result will return a Python float (never an int).

• Expressions with a string result will return a Python str (string) or unicode value.

• Expressions that produce a list of values, such as node-sets, will return a Python list. Elements of
this list may in turn be any of several types:
• Elements, comments, and processing instructions will be represented as lxmlElement, Comment,

and ProcessingInstruction instances.
• Text content and attribute values are returned as Python str (string) instances.
• Namespace declarations are returned as a two-tuple (prefix, namespaceURI).

For further information on lxml's XPath features, see XML Path Language (XPath)13.

10.1. An XPath example
Here is an example of a situation where an XPath expression can save you a lot of work. Suppose you
have a document with an element called para that represents a paragraph of text. Further suppose that
your para has a mixed-content model, so its content is a free mixture of text and several kinds of inline
markup. Your application, however, needs to extract just the text in the paragraph, discarding any and
all tags.

Using just the classic ElementTree interface, this would require you to write some kind of function
that recursively walks the para element and its subtree, extracting the .text and .tail attributes at
each level and eventually gluing them all together.

However, there is a relatively simple XPath expression that does all this for you:

descendant-or-self::text()

The “descendant-or-self::” is an axis selector that limits the search to the context node, its children,
their children, and so on out to the leaves of the tree. The “text()” function selects only text nodes,
discarding any elements, comments, and other non-textual content. The return value is a list of strings.

Here's an example of this expression in practice.

>>> node=etree.fromstring('''<a>
... a-text b-text b-tail <c>c-text</c> c-tail
... ''')
>>> alltext = node.xpath('descendant-or-self::text()')
>>> alltext
['\n a-text ', 'b-text', ' b-tail ', 'c-text', ' c-tail\n']
>>> clump = "".join(alltext)
>>> clump
'\n a-text b-text b-tail c-text c-tail\n'
>>>

13 http://www.w3.org/TR/xpath

31Python XML processing with lxmlZoological Data Processing

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

11.The art of Web-scraping: Parsing HTML with Beautiful
Soup

Web-scraping14 is a technique for extracting data from Web pages. If everyone on the World Wide Web
used valid XHTML, this would be easy. However, in the real world, the vast majority of Web pages use
something you could call tag soup15—theoretically HTML, but in reality often an unstructured mixture
of tags and text.

Fortunately, the lxml module includes a package called BeautifulSoup16 that attempts to translate tag
soup into a tree just as if it came from a valid XHTML page. Naturally this process is not perfect, but
there is a very good chance that the resulting tree will have enough predictable structure to allow for
automated extraction of the information in it.

Import the BeautifulSoup module like this:

from lxml.html import soupparser

There are two functions in this module.

soupparser.parse(input)
The input argument specifies a Web page's HTML source as either a file name or a file-like object.
The return value is an ElementTree instance whose root element is an html element as an Element
instance.

soupparser.fromstring(s)
The s argument is a string containing some tag soup. The return value is a tree of nodes representing
s. The root node of this tree will always be an html element as an Element instance.

12. Automated validation of input files
What happens to your application if you read a file that does not conform to the schema? There are two
ways to deal with error handling.

• If you are a careful and defensive programmer, you will always check for the presence and validity
of every part of the XML document you are reading, and issue an appropriate error message. If you
aren't careful or defensive enough, your application may crash.

• It can make your application a lot simpler if you mechanically validate the input file against the
schema that defines its document type.

With the lxml module, the latter approach is inexpensive both in programming effort and in runtime.
You can validate a document using either of these major schema languages:

• Section 12.1, “Validation with a Relax NG schema” (p. 32).
• Section 12.2, “Validation with an XSchema (XSD) schema” (p. 33).

12.1. Validation with a Relax NG schema
The lxml module can validate a document, in the form of an ElementTree, against a schema expressed
in the Relax NG notation. For more information about Relax NG, see Relax NG Compact Syntax (RNC)17.

14 http://en.wikipedia.org/wiki/Web_scraping
15 http://en.wikipedia.org/wiki/Tag_soup
16 http://lxml.de/elementsoup.html
17 http://www.nmt.edu/~shipman/soft/rnc/

Zoological Data ProcessingPython XML processing with lxml32

http://en.wikipedia.org/wiki/Web_scraping
http://en.wikipedia.org/wiki/Tag_soup
http://lxml.de/elementsoup.html
http://www.nmt.edu/~shipman/soft/rnc/
http://en.wikipedia.org/wiki/Web_scraping
http://en.wikipedia.org/wiki/Tag_soup
http://lxml.de/elementsoup.html
http://www.nmt.edu/~shipman/soft/rnc/

A Relax NG schema can use two forms: the compact syntax (RNC), or an XML document type (RNG).
If your schema uses RNC, you must translate it to RNG format. The trang utility does this conversion
for you. Use a command of this form:

trang file.rnc file.rng

Once you have the schema available as an .rng file, use these steps to valid an element tree ET.

1. Parse the .rng file into its own ElementTree, as described in Section 7.3, “The ElementTree()
constructor” (p. 13).

2. Use the constructor etree.RelaxNG(S) to convert that tree into a “schema instance,” where S
is the ElementTree instance, containing the schema, from the previous step.

If the tree is not a valid Relax NG schema, the constructor will raise an etree.RelaxNGParseEr-
ror exception.

3. Use the .validate(ET) method of the schema instance to validate ET.

This method returns 1 if ET validates against the schema, or 0 if it does not.

If the method returns 0, the schema instance has an attribute named .error_log containing all
the errors detected by the schema instance. You can print .error_log.last_error to see the
most recent error detected.

Presented later in this document are two examples of the use of this validation technique:

• Section 15, “rnc_validate: A module to validate XML against a Relax NG schema” (p. 45).

• Section 16, “rnck: A standalone script to validate XML against a Relax NG schema” (p. 52).

12.2. Validation with an XSchema (XSD) schema
To validate a document against a schema written in the XSchema language, follow the steps shown in
Section 12.1, “Validation with a Relax NG schema” (p. 32), with one variation.

Instead of using etree.RelaxNG() to parse your schema tree S, use etree.XMLSchema(S).

13. etbuilder.py: A simplified XML builder module
If you are building a lot of XML, it can be somewhat cumbersome to take several lines of code to build
a single element. For elements with text content, you'll write a lot of two-line sequences like this:

mainTitle = et.Element('h1')
mainTitle.text = "Welcome to Your Title Here!"

The brilliant and productive Fredrik Lundh has written a very nice module called builder.py that
makes building XML a lot easier.

• See Lundh's original page, An ElementTree Builder18, for an older version of his module, with
documentation and examples.

• You may wish to use the current version of builder.py from Lundh's SVN repository page19.

18 http://effbot.org/zone/element-builder.htm
19 http://svn.effbot.org/public/stuff/sandbox/elementlib/

33Python XML processing with lxmlZoological Data Processing

http://effbot.org/zone/element-builder.htm
http://svn.effbot.org/public/stuff/sandbox/elementlib/
http://effbot.org/zone/element-builder.htm
http://svn.effbot.org/public/stuff/sandbox/elementlib/

• The author has written a modified version based heavily on Lundh's version. The source for this et-
builder.py module is available online20.

For the instructions for use of the author's version, see Section 13.1, “Using the etbuilder mod-
ule” (p. 34).

For the actual implementation in lightweight literate programming form21, see Section 14, “Imple-
mentation of etbuilder” (p. 36).

13.1. Using the etbuilder module
Instead of importing the ElementTree package as et, use this importation:

from etbuilder import et, E

The name E is a factory object that creates et.Element instances.

Here is the calling sequence for E:

E(tag, *p, **kw)

The first argument, tag, is the element's name as a string. The return value is a new et.Element in-
stance.

You can supply any number of positional arguments p, followed by any number of keyword arguments.
The interpretation of each argument depends on its type. The displays with “>>>” prompts are interactive
examples.

• Any keyword argument of the form “name=value” becomes an XML attribute “name='value'”
of the new element.

>>> colElt=E('col', valign='top', align='left')
>>> et.tostring(colElt)
'<col align="left" valign="top" />'

• String arguments are added to the content of the tag.

>>> p14 = E("p", "Welcome to ", "Your Paragraph Here.")
>>> et.tostring(p14)
'<p>Welcome to Your Paragraph Here.</p>'

• An argument of type int is converted to a string and added to the tag's content.

• If you pass a dictionary to the factory, its members also become XML attributes. For instance, you
might create an XHTML table cell element like this:

>>> cell = E('td', {'valign': 'top', 'align': 'right'}, 14)
>>> et.tostring(cell)
'<td align="right" valign="top">14</td>'

• You can pass in an et.Element instance, and it becomes a child element of the element being built.
This allows you to nest calls within calls, like this:

20 http://www.nmt.edu/~shipman/soft/pylxml/etbuilder.py
21 http://www.nmt.edu/~shipman/soft/litprog/

Zoological Data ProcessingPython XML processing with lxml34

http://www.nmt.edu/~shipman/soft/pylxml/etbuilder.py
http://www.nmt.edu/~shipman/soft/litprog/
http://www.nmt.edu/~shipman/soft/pylxml/etbuilder.py
http://www.nmt.edu/~shipman/soft/litprog/

>>> head = E('head',
... E('title', 'Your Page Title Here'),
... E('link', rel='stylesheet', href='/tcc/style.css'))
>>> print et.tostring(head, pretty_print=True)
<head>
<title>Your Page Title Here</title>
<link href="/tcc/style.css" rel="stylesheet" />

</head>

This module has one more nice wrinkle. If the name of the tag you are creating is also a valid Python
name, you can use that name as the name of a method call on the E instance. That is,

E.name(...)

is functionally equivalent to

E("name", ...)

Here is an example:

>>> head = E.head(
... E.title('Your title'),
... E.link(rel='stylesheet', href='/tcc/style.css'))
>>> print et.tostring(head, pretty_print=True)
<head>
<title>Your title</title>
<link href="/tcc/style.css" rel="stylesheet" />

</head>

13.2. CLASS(): Adding class attributes
One of the commonest operations is to attach a class attribute to an XML tag. For instance, suppose
you want to generate this content:

<div class='warning'>
Your brain may not be the boss!

</div>

The obvious way to do this does not work:

E.div("Your brain may not be the boss!", class='warning') # Fails!

Because class is a reserved word in Python, you can't use it as an argument keyword. Therefore, the
package includes a helper function named CLASS() that takes one or more names as arguments, and
returns a dictionary that can be passed to the E() constructor to add a class= attribute with the argu-
ment value. This example does work to generate the above XML:

E.div("Your brain may not be the boss!", CLASS('warning')) # Works.

Here's another example, this time with multiple class names.

E.span(CLASS('ref', 'index'), "Pie, whole.")

This generates:

35Python XML processing with lxmlZoological Data Processing

Pie, whole.

13.3. FOR(): Adding for attributes
This function is similar to the one defined in Section 13.2, “CLASS(): Adding class attributes” (p. 35):
it is used to attach an attribute to an element whose name (for) is a Python reserved word. Such attributes
are commonly used to link an XHTML label element to a form element.

13.4. subElement(): Adding a child element
This function combines the two common operations of creating an element and adding it as the next
child of some parent node. The general calling sequence is:

subNode = subElement(parent, child)

This function adds child as the next child of parent, and returns the child.

13.5. addText(): Adding text content to an element
This convenience function handles the special logic used to add text content to an ElementTree-style
node. The problem is that if the node does not have any children, the new text is appended to the node's
.text attribute, but if there are any children, the new text must be appended to the .tail attribute
of the last child. Refer to Section 2, “How ElementTree represents XML” (p. 4) for a discussion of
why this is necessary.

Here is the general calling sequence to add some text string s to an existing node:

addText(node, s)

14. Implementation of etbuilder
Here is the author's etbuilder.py module, with narrative.

14.1. Features differing from Lundh's original
The author's version differs from Lundh's version in these respects:

• It requires the lxml package. Lundh's version did not use lxml; it uses cElementTree, or element-
tree if that is not available.

• It requires Python 2.5 or later. Lundh's version will work with earlier versions, probably back to at
least 2.2.

• The author's version also permits int values in the call to the E instance.

14.2. Prologue
The module begins with a comment pointing back to this documentation, and acknowledging Fredrik
Lundh's work.

Zoological Data ProcessingPython XML processing with lxml36

etbuilder.py

"""etbuilder.py: An element builder for lxml.etree
==

$Revision: 1.55 $ $Date: 2012/08/11 21:44:19 $
==
For documentation, see:

http://www.nmt.edu/~shipman/soft/pylxml/
Borrows heavily from the work of Fredrik Lundh; see:

http://effbot.org/zone/
"""

The et module is lxml.etree.
etbuilder.py

#==
Imports
#--

from lxml import etree as et

The functools.partial() function22 is used to curry a function call in Section 14.11, “Element-
Maker.__getattr__(): Handle arbitrary method calls” (p. 44).

However, the functools module is new in Python 2.5. In order to make this module work in a Python
2.4 install, we will anticipate a possible failure to import functools, providing that functionality with
a substitute partial() function. This function is stolen directly from the Python Library Reference23.

etbuilder.py

try:
from functools import partial

except ImportError:
def partial(func, *args, **keywords):

def newfunc(*fargs, **fkeywords):
newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*(args + fargs), **newkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc

14.3. CLASS(): Helper function for adding CSS class attributes
Next comes the definition of the CLASS() helper function discussed in Section 13.2, “CLASS(): Adding
class attributes” (p. 35).

etbuilder.py

- - - C L A S S

def CLASS(*names):
'''Helper function for adding 'class=...' attributes to tags.

[names is a list of strings ->

22 http://docs.python.org/library/functools.html
23 http://docs.python.org/library/functools.html

37Python XML processing with lxmlZoological Data Processing

http://docs.python.org/library/functools.html
http://docs.python.org/library/functools.html
http://docs.python.org/library/functools.html
http://docs.python.org/library/functools.html

return a dictionary with one key 'class' and the related
value the concatenation of (names) with one space between
them]

'''
return {'class': ' '.join(names)}

14.4. FOR(): Helper function for adding XHTML for attributes
etbuilder.py

- - - F O R

def FOR(id):
'''Helper function for adding 'for=ID' attributes to tags.
'''
return {'for': id}

14.5. subElement(): Add a child element
See Section 13.4, “subElement(): Adding a child element” (p. 36).

etbuilder.py

- - - s u b E l e m e n t

def subElement(parent, child):
'''Add a child node to the parent and return the child.

[(parent is an Element) and
(child is an Element with no parent) ->
parent := parent with child added as its new last child
return child]

'''
#-- 1 --
parent.append(child)

#-- 2 --
return child

14.6. addText(): Add text content to an element
See Section 13.5, “addText(): Adding text content to an element” (p. 36). To simplify the caller's job,
we do nothing if s is None, as may be the case with the .text or .tail attribute of an et.Element.

etbuilder.py

- - - a d d T e x t

def addText(node, s):
'''Add text content to an element.

[(node is an Element) and (s is a string) ->
if node has any children ->

last child's .tail +:= s
else ->

Zoological Data ProcessingPython XML processing with lxml38

node.text +:= s]
'''
#-- 1 --
if not s:

return

#-- 2 --
if len(node) == 0:

node.text = (node.text or "") + s
else:

lastChild = node[-1]
lastChild.tail = (lastChild.tail or "") + s

14.7. class ElementMaker:The factory class
The name E that the user imports is not a class. It is a factory object, that is, an instance of the Element-
Maker factory class.

etbuilder.py

- - - - - c l a s s E l e m e n t M a k e r

class ElementMaker(object):
'''ElementTree element factory class

Exports:
ElementMaker(typeMap=None):
[(typeMap is an optional dictionary whose keys are
type objects T, and each corresponding value is a
function with calling sequence
f(elt, item)

and generic intended function
[(elt is an et.Element) and
(item has type T) ->
elt := elt with item added]) ->

return a new ElementMaker instance that has
calling sequence
E(*p, **kw)

and intended function
[p[0] exists and is a str ->

return a new et.Element instance whose name
is p[0], and remaining elements of p become
string content of that element (for types
str, unicode, and int) or attributes (for
type dict, and members of kw) or children
(for type et.Element), plus additional
handling from typeMap if it is provided]

and allows arbitrary method calls of the form
E.tag(*p, **kw)

with intended function
[return a new et.Element instance whose name
is (tag), and elements of p and kw have
the same effects as E(*(p[1:]), **kw)]

'''

39Python XML processing with lxmlZoological Data Processing

For a discussion of intended functions and the Cleanroom software development methodology, see the
author's Cleanroom page24.

You can use the optional typeMap argument to provide logic to handle types other than the ones defined
in Section 13.1, “Using the etbuilder module” (p. 34). Refer to the constructor for a discussion of the
internal state item .__typeMap and how it works in element construction.

14.8. ElementMaker.__init__(): Constructor
The factory instance returned by the ElementMaker constructor must look at the type of each of its
positional arguments in order to know what to do with it. Python's dictionary type makes this easy to
do: we use a dictionary whose keys are Python type objects. Each of the corresponding values in this
dictionary is a function that can be called to process arguments of that type.

The dictionary is a private attribute .__typeMap, and all the constructor does is set this dictionary up.

The functions that process arguments all have this generic calling sequence:

f(elt, item)

where elt is the et.Element being built, and item is the argument to be processed.

The first step is to initialize the .__typeMap dictionary. In most cases, the user will be satisfied with
the type set described in Section 13.1, “Using the etbuilder module” (p. 34). However, as a conveni-
ence, Lundh's original builder.py design allows the caller to supply a dictionary of additional type-
function pairs as an optional argument; in that case, we will copy the supplied dictionary as the initial
value of self.__typeMap.

etbuilder.py

- - - E l e m e n t M a k e r . _ _ i n i t _ _

def __init__(self, typeMap=None):
'''Constructor for the ElementMaker factory class.
'''
#-- 1 --
[if typeMap is None ->
self.__typeMap := a new, empty dictionary
else ->
self.__typeMap := a copy of typeMap]
if typeMap is None:

self.__typeMap = {}
else:

self.__typeMap = typeMap.copy()

The first types we'll need to handle are the str and unicode types. These types will use a function we
define locally named addText(). Adding text to an element in the ElementTree world has two cases.
If the element has no children, the text is added to the element's .text attribute. If the element has any
children, the new text is added to the last child's .tail attribute. See Section 2, “How ElementTree
represents XML” (p. 4) for a review of text handling.

etbuilder.py

#-- 2 --
[self.__typeMap[str], self.__typeMap[unicode] :=
a function with calling sequence
addText(elt, item)

24 http://www.nmt.edu/~shipman/soft/clean/

Zoological Data ProcessingPython XML processing with lxml40

http://www.nmt.edu/~shipman/soft/clean/
http://www.nmt.edu/~shipman/soft/clean/

and intended function
[(elt is an et.Element) and
(item is a str or unicode instance) ->
if elt has no children and elt.text is None ->
elt.text := item
else if elt has no children ->
elt.text +:= item
else if elt's last child has .text==None ->
that child's .text := item
else ->
that child's .text +:= item]
def addText(elt, item):

if len(elt):
elt[-1].tail = (elt[-1].tail or "") + item

else:
elt.text = (elt.text or "") + item

self.__typeMap[str] = self.__typeMap[unicode] = addText

Lundh's original module did not handle arguments of type int, but this ability is handy for many
common tags, such as “<table border='8'>”, which becomes “E.table(border=8)”.

A little deviousness is required here. The addInt() function can't call the addText() function above
directly, because the name addText is bound to that function only inside the constructor. The instance
does not know that name. However, we can assume that self.__typeMap[str] is bound to that
function, so we call it from there.

etbuilder.py

#-- 3 --
[self.__typeMap[str], self.__typeMap[unicode] :=
a function with calling sequence
addInt(elt, item)
and intended function
[(elt is an et.Element) and
(item is an int instance) ->
if elt has no children and elt.text is None ->
elt.text := str(item)
else if elt has no children ->
elt.text +:= str(item)
else if elt's last child has .text==None ->
that child's .text := str(item)
else ->
that child's .text +:= str(item)]
def addInt(elt, item):

self.__typeMap[str](elt, str(item))
self.__typeMap[int] = addInt

The next type we need to handle is dict. Each key-value pair from the dictionary becomes an XML
attribute. For user convenience, if the value is not a string, we'll use the str() function on it, allowing
constructs like “E({border: 1})”.

etbuilder.py

#-- 4 --
[self.__typeMap[dict] := a function with calling
sequence
addDict(elt, item)

41Python XML processing with lxmlZoological Data Processing

and intended function
[(elt is an et.Element) and
(item is a dictionary) ->
elt := elt with an attribute made from
each key-value pair from item]
def addDict(elt, item):

for key, value in item.items():
if isinstance(value, basestring):

elt.attrib[key] = value
else:

elt.attrib[key] = str(value)
self.__typeMap[dict] = addDict

Note
In Lundh's original, the last line of the previous block was the equivalent of this:

elt.attrib[key] = \
self.__typeMap[type(value)](None, value)

I'm not entirely sure what he had in mind here. If you have any good theories, please forward them to
<john@nmt.edu>.

Next up is the handler for arguments that are instances of et.Element. We'll actually create an
et.Element to be sure that self.__typeMap uses the correct key.

etbuilder.py

#-- 5 --
[self.__typeMap[type(et.Element instances)] := a
function with calling sequence
addElt(elt, item)
and intended function
[(elt and item are et.Element instances) ->
elt := elt with item added as its next
child element]
def addElement(elt, item):

elt.append(item)
sample = et.Element('sample')
self.__typeMap[type(sample)] = addElement

14.9. ElementMaker.__call__(): Handle calls to the factory instance
This method is called when the user calls the factory instance E.

etbuilder.py

- - - E l e m e n t M a k e r . _ _ c a l l _ _

def __call__(self, tag, *argList, **attr):
'''Handle calls to a factory instance.
'''

First we create a new, empty element with the given tag name.

Zoological Data ProcessingPython XML processing with lxml42

etbuilder.py

#-- 1 --
[elt := a new et.Element with name (tag)]
elt = et.Element(tag)

If the attr dictionary has anything in it, we can use the function stored in self.__typeMap[dict]
to process those attributes.

etbuilder.py

#-- 2 --
[elt := elt with attributes made from the key-value
pairs in attr]
else -> I]
if attr:

self.__typeMap[dict](elt, attr)

Next, process the positional arguments in a loop, using each argument's type to extract from
self.__typeMap the proper handler for that type. For this logic, see Section 14.10, “Element-
Maker.__handleArg(): Process one positional argument” (p. 43).

etbuilder.py

#-- 3 --
[if the types of all the members of pos are also
keys in self.__typeMap ->
elt := elt modified as per the corresponding
functions from self.__typeMap
else -> raise TypeError]
for arg in argList:

#-- 3 body --
[if type(arg) is a key in self.__typeMap ->
elt := elt modified as per self.__typeMap[type(arg)]
else -> raise TypeError]
self.__handleArg(elt, arg)

Finally, return the shiny new element to the caller.
etbuilder.py

#-- 4 --
return elt

14.10.ElementMaker.__handleArg(): Process one positional argument
This method processes one of the positional arguments when the factory instance is called.

etbuilder.py

- - - E l e m e n t M a k e r . _ _ h a n d l e A r g

def __handleArg(self, elt, arg):
'''Process one positional argument to the factory instance.

[(elt is an et.Element) ->
if type(arg) is a key in self.__typeMap ->
elt := elt modified as per self.__typeMap[type(arg)]

else -> raise TypeError]
'''

43Python XML processing with lxmlZoological Data Processing

As a convenience, if the caller passes some callable object, we'll call that object and use its result. Other-
wise we'll use the object itself. (This is another Lundh feature, the utility of which I don't fully under-
stand.)

etbuilder.py

#-- 1 --
[if arg is callable ->
value := arg()
else ->
value := arg]
if callable(arg):

value = arg()
else:

value = arg

Next we look up the value's type in self.__typeMap, and call the corresponding function.
etbuilder.py

#-- 2 --
[if type(value) is a key in self.__typeMap ->
elt := elt modified as per self.__typeMap[type(value)]
else -> raise TypeError]
try:

handler = self.__typeMap[type(value)]
handler(elt, value)

except KeyError:
raise TypeError("Invalid argument type: %r" % value)

14.11. ElementMaker.__getattr__(): Handle arbitrary method calls
This method is called whenever the caller invokes an undefined method of a factory instance. It imple-
ments the feature that you can use an element name as a method name so that “E.tag(...)” is the
equivalent of “E(tag, ...)”.

The method is a one-liner, but it's a rather abstruse one-liner for anyone that has never studied functional
programming. See the functools.partial documentation25. The method returns a callable object
that acts the same as a call to the factory instance, except with tag inserted before its other positional
arguments.

The Wikipedia article on currying26 explains this technique in depth.
etbuilder.py

- - - E l e m e n t M a k e r . _ _ g e t a t t r _ _

def __getattr__(self, tag):
'''Handle arbitrary method calls.

[tag is a string ->
return a new et.Element instance whose name
is (tag), and elements of p and kw have
the same effects as E(*(p[1:]), **kw)]

'''
return partial(self, tag)

25 http://docs.python.org/library/functools.html
26 http://en.wikipedia.org/wiki/Currying

Zoological Data ProcessingPython XML processing with lxml44

http://docs.python.org/library/functools.html
http://en.wikipedia.org/wiki/Currying
http://docs.python.org/library/functools.html
http://en.wikipedia.org/wiki/Currying

14.12. Epilogue
The last step is to create the factory instance E.

etbuilder.py

- - - - - m a i n

E = ElementMaker()

14.13. testetbuilder: A test driver for etbuilder
Here is a small script that exercises the etbuilder module.

This script generates a small XHTML page that looks like this:

<html>
<head>
<title>Sample page<title>
<link href="/tcc/style.css" rel="stylesheet"/>

</head>
<body>
<h1 class='big-title'>Sample page title</h1>
<p>A paragraph containing a <a href='http://www.nmt.edu/'
>link to the NMT homepage.</p>

</body>
</html>

The script follows.
testetbuilder

#!/usr/bin/env python
from __future__ import print_function
from etbuilder import E, et, CLASS

page = E.html(
E.head(
E.title("Sample page"),
E.link(href='/tcc/style.css', rel='stylesheet')),

E.body(
E.h1(CLASS('big-title'), "Sample page title"),
E.p("A paragraph containing ", 1, " ",
E.a("link to the NMT homepage",

href='http://www.nmt.edu/'),
".")))

print(et.tostring(page, pretty_print=True, encoding=unicode), end='')

15.rnc_validate: A module to validate XML against a Relax
NG schema

Here we present a Python module to validate XML files against a Relax NG schema using the techniques
described in Section 12, “Automated validation of input files” (p. 32).

45Python XML processing with lxmlZoological Data Processing

15.1. Design of the rnc_validate module
This module will work from a schema file in either Relax NG Compact Form (.rnc) or XML syntax
(.rng).

However, because lxml's validation machinery cannot read .rnc files directly, our module must take
its input from an .rng file.

If the schema file name ends in .rnc, we make these assumptions:

• If there is an .rng file with the same basename as the .rnc, and provided that it is up-to-date (with
a newer file modification timestamp), we will use the .rng version.

• If there is no corresponding .rng version, or if the .rng file is out of date, we assume that the trang27

utility is locally installed. This utility can translate from .rnc to .rng format.

We also assume that we have write access so that we can create or recreate the .rng file.

15.2. Interface to the rnc_validate module
Our module rnc_validate.py exports this interface.

RelaxException
An exception class that inherits from Python's standard Exception class. This exception will be
raised when an XML file is found not to be valid against the given Relax NG schema. The str()
function, applied to an instance of this exception, returns a textual description of the validity error.

RelaxValidator(schemaPath)
This class constructor takes one argument, a path name to a schema in either .rnc or .rng format.
Assuming that the situation meets all the assumptions enumerated in Section 15.1, “Design of the
rnc_validate module” (p. 46), it returns a new RelaxValidator instance that can be used to
validate XML files against that schema.

If anything goes wrong, the constructor raises a RelaxError exception. This can happen for sev-
eral reasons, for example: failure to read the schema; failure to write the .rng file if translating
from .rnc format; if the .rng file is not well-formed or not a valid Relax NG schema.

RV.validate(tree)
For a RelaxValidator instance RV, this method takes as its argument an ElementTree instance
containing an XML document. If that document is valid against the schema, this method returns
None. If there is a validation problem, it raises RelaxException.

15.3. rnc_validate.py: Prologue
The actual code for this module starts here, with the customary documentation string, which points
back to this documentation. The block also contains Cleanroom28 intended function notation for the
interface described above.

rnc_validate.py

'''rnc_validate.py: An XML validator for Relax NG schemas.
For documentation, see:
http://www.nmt.edu/~shipman/soft/pylxml/

Exports:

27 http://www.thaiopensource.com/relaxng/trang.html
28 http://www.nmt.edu/~shipman/soft/clean/

Zoological Data ProcessingPython XML processing with lxml46

http://www.thaiopensource.com/relaxng/trang.html
http://www.nmt.edu/~shipman/soft/clean/
http://www.thaiopensource.com/relaxng/trang.html
http://www.nmt.edu/~shipman/soft/clean/

class RelaxException(Exception)
class RelaxValidator
RelaxValidator(schemaPath):
[schemaPath is a string ->

if schemaPath names a readable, valid .rng schema ->
return a RelaxValidator that validates against that schema

else if (schemaPath, with .rnc appended if there is no
extension, names a readable, valid .rnc schema) ->
if the corresponding .rng schema is readable, valid, and
newer than the .rnc schema ->
return a RelaxValidator that validates against the
.rng schema

else if (we have write access to the corresponding .rng
schema) and (trang is locally installed) ->
corresponding .rng schema := trang's translation of

the .rnc schema into .rng
return a RelaxValidator that validates against the
translated schema

else -> raise ValueError]
.validate(tree):
[tree is an etree.ElementTree ->

if tree validates against self -> I
else -> raise RelaxException]

'''

Next come module imports. We need the standard Python os and stat modules to check file modific-
ation times.

rnc_validate.py

- - - - - I m p o r t s

import os
import stat

We import the lxml module's etree implementation but call it et.
rnc_validate.py

from lxml import etree as et

The pexpect29 module is a third-party library for spawning and controlling subprocesses. We need it
to run trang.

rnc_validate.py

import pexpect

We'll need two constants for the characteristic file suffixes.
rnc_validate.py

- - - - - M a n i f e s t c o n s t a n t s

RNC_SUFFIX = '.rnc'
RNG_SUFFIX = '.rng'

29 http://www.noah.org/wiki/Pexpect

47Python XML processing with lxmlZoological Data Processing

http://www.noah.org/wiki/Pexpect
http://www.noah.org/wiki/Pexpect

15.4. RelaxException
This pro-forma exception is used to signal validity problem.

rnc_validate.py

- - - - - c l a s s R e l a x E x c e p t i o n

class RelaxException(Exception):
pass

15.5. class RelaxValidator
Within an instance of this class, we keep one internal state item, the RelaxNG instance representing the
.rng schema.

rnc_validate.py

- - - - - c l a s s R e l a x V a l i d a t o r

class RelaxValidator(object):
'''Represents an XML validator for a given Relax NG schema.

State/Invariants:
.__schema:
[an etree.RelaxNG instance representing the effective schema]

'''

15.6. RelaxValidator.validate()
This method passes the ElementTree to the .validate() method of the stored RelaxNG instance,
which returns a bool value, True iff the tree is valid. We translate a False return value to an exception.

rnc_validate.py

- - - R e l a x V a l i d a t o r . v a l i d a t e

def validate(self, tree):
'''Validate tree against self.
'''
if not self.__schema.validate(tree):

raise RelaxException(self.__schema.error_log)

15.7. RelaxValidator.__init__(): Constructor
The first step is to remove the file suffix so we know which kind of schema we're using, and then derive
the full path names of both the .rnc and .rng (potential) versions of the schema.

rnc_validate.py

- - - R e l a x V a l i d a t o r . _ _ i n i t _ _

def __init__(self, schemaPath):
'''Constructor.
'''

Zoological Data ProcessingPython XML processing with lxml48

#-- 1 --
[basePath := schemaPath without its extension
suffix := schemaPath's extension, defaulting to RNC_SUFFIX
cName := (schemaPath without its extension)+RNC_SUFFIX
gName := (schemaPath without its extension)+RNG_SUFFIX]
basePath, suffix = os.path.splitext(schemaPath)
if suffix == '':

suffix = RNC_SUFFIX
gName = basePath + RNG_SUFFIX
cName = basePath + RNC_SUFFIX

If the desired schema is in .rng form, we're ready to proceed. If it is an .rnc schema, though, we need
an .rng version that is up to date. See Section 15.8, “RelaxValidator.__makeRNG(): Find or create
an .rng file” (p. 50). If the file suffix isn't either, that's an error.

rnc_validate.py

#-- 2 --
[if suffix == RNG_SUFFIX ->
I
else if (file cName is readable) and (gName names a
readable file that is newer than cName) ->
I
else if (cName names a readable, valid RNC file) and
(we have write access to path gName) and
(trang is locally installed) ->
file gName := trang's translation of file cName into RNG
else -> raise ValueError]
if suffix == RNC_SUFFIX:

self.__makeRNG(cName, gName)
elif suffix != RNG_SUFFIX:

raise ValueError("File suffix not %s or %s: %s" %
(RNC_SUFFIX, RNG_SUFFIX, suffix))

At this point we have a known good .rng version of the schema. Read that, make it into a RelaxNG
instance (assuming it is valid Relax NG), and store it in self.__schema.

rnc_validate.py

#-- 3 --
if gName names a readable, valid XML file ->
doc := an et.ElementTree representing that file
else -> raise ValueError]
try:

doc = et.parse(gName)
except IOError, details:

raise ValueError("Can't open the schema file '%s': %s" %
(gName, str(details)))

#-- 4 --
[if doc is a valid RNG schema ->
self.__schema := an et.RelaxNG instance that represents
doc
else -> raise ValueError]
try:

self.__schema = et.RelaxNG(doc)
except et.RelaxNGParseError, details:

49Python XML processing with lxmlZoological Data Processing

raise ValueError("Schema file '%s' is not valid: %s" %
(gName, str(details)))

15.8. RelaxValidator.__makeRNG(): Find or create an .rng file
rnc_validate.py

- - - R e l a x V a l i d a t o r . _ _ m a k e R N G

def __makeRNG(self, cName, gName):
'''Insure that a current RNG file exists.

[(cName names an RNC file) and (gName names an RNG file) ->
if (file cName is readable) and (gName names a
readable file that is newer than cName) ->
I

else if (cName names a readable, valid RNC file) and
(we have write access to path gName) and
(trang is locally installed) ->
file gName := trang's translation of file cName into RNG

else -> raise ValueError]
'''

First we get the modification time of the .rnc file. See Section 15.9, “RelaxValidator.__getMod-
Time(): When was this file last changed?” (p. 51). If anything goes wrong, we raise a ValueError.

rnc_validate.py

#-- 1 --
[if we can stat file (cName) ->
cTime := epoch modification timestamp of that file
else -> raise ValueError]
try:

cTime = self.__getModTime(cName)
except (IOError, OSError), details:

raise ValueError("Can't read the RNC file '%s': %s" %
(cName, str(details)))

Then we try to get the modification time of the .rng file. If that file exists and the modification time is
newer, we're done, because the .rng is up to date against the requested .rnc schema. If either the file
doesn't exist or it's out of date, fall through to the next step.

rnc_validate.py

#-- 2 --
[if (we can stat file (gName)) and
(that file's modification time is more recent than cTime) ->
return
else -> I]
try:

gTime = self.__getModTime(gName)
if gTime > cTime:

return
except (IOError, OSError):

pass

Zoological Data ProcessingPython XML processing with lxml50

Now, try to recreate the .rng file by running the .rnc file through trang. See Section 15.10, “RelaxVal-
idator.__trang(): Translate .rnc to .rng format” (p. 51).

rnc_validate.py

#-- 3 --
[if (file (cName) is a valid RNC file) and
(we have write access to path gName) and
(trang is locally installed) ->
file (gName) := an RNG representation of file (cName)
else -> raise ValueError]
self.__trang(cName, gName)

15.9. RelaxValidator.__getModTime(): When was this file last
changed?

The returned value is an epoch time, the number of seconds since January 0, 1970.
rnc_validate.py

- - - R e l a x V a l i d a t o r . _ _ g e t M o d T i m e

def __getModTime(self, fileName):
'''Try to retrieve a file's modification timestamp.

[fileName is a string ->
if fileName does not exist ->
raise OSError

if we can stat fileName ->
return that file's modification epoch time

else -> raise IOError]
'''
return os.stat(fileName)[stat.ST_MTIME]

15.10. RelaxValidator.__trang():Translate .rnc to .rng format
We use the pexpect module's run() function to execute the trang script with command line arguments
of this form:

trang F.rnc F.rng

That function returns the entire output of the run as a string. The output from trang is empty if the
translation succeeded; otherwise it contains the error message.

rnc_validate.py

- - - R e l a x V a l i d a t o r . _ _ t r a n g

def __trang(self, cName, gName):
'''Translate an RNC schema to RNG format.

[if (file (cName) is a valid RNC file) and
(we have write access to path gName) and
(trang is locally installed) ->
file (gName) := an RNG representation of file (cName)

else -> raise ValueError]
'''

51Python XML processing with lxmlZoological Data Processing

rnc_validate.py

#-- 1 --
[output := all output from the execution of the command
"trang (cName) (gName)"]
output = pexpect.run("trang %s %s" % (cName, gName))

#-- 2 --
if len(output) > 0:

raise ValueError("Could not create '%s' from '%s':/n%s" %
(gName, cName, output))

16. rnck: A standalone script to validate XML against a Relax
NG schema

Here we present a script that uses the rnc_validate module to validate one or more XML files against
a given Relax NG schema.

Command line arguments take this form:

rnck schema file ...

schema
Names a Relax NG schema as either an .rnc file or an .rng file.

file
Names of one or more XML files to be validated against schema.

16.1. rnck: Prologue
Here begins the actual rnck script in literate form30. First is the usual “pound-bang line” to make the
script self-executing under Unix-based systems, followed by an opening comment pointing back at this
documentation.

rnck

#!/usr/bin/env python
#==
rnck: Validate XML files against an RNC schema.
For documentation, see:
http://www.nmt.edu/~shipman/soft/pylxml/
#--

Next come module imports. We use the Python 3.x style of print statement. We need the standard
Python sys module for standard I/O streams and command line arguments.

rnck

- - - - - I m p o r t s

from __future__ import print_function
import sys

30 http://www.nmt.edu/~shipman/soft/litprog/

Zoological Data ProcessingPython XML processing with lxml52

http://www.nmt.edu/~shipman/soft/litprog/
http://www.nmt.edu/~shipman/soft/litprog/

We'll need the lxml.etree module to read the XML files, but we'll call it et for short.
rnck

import lxml.etree as et

Finally, import the rnc_validate module described in Section 15, “rnc_validate: A module to
validate XML against a Relax NG schema” (p. 45).

rnck

import rnc_validate

16.2. rnck: main()
rnck

- - - - - m a i n

def main():
"""Validate one or more files against an RNC schema.

[if (command line arguments are valid) ->
if (.rnc and .rng are readable, valid, and up to date) and
(all FILE arguments are valid against that .rng) ->
I

else (if .rnc is readable and valid and .rng can be updated
from the .rnc) and
(all FILE arguments are valid against that .rng) ->
the .rng file := an RNG version of the .rnc

else ->
sys.stderr +:= error message

else ->
sys.stderr +:= error message]

"""

Processing of the arguments is handled in Section 16.3, “rnck: checkArgs()” (p. 54). We get back two
items: the path to the schema, and a list of XML file names to be validated.

rnck

#-- 1 --
[if sys.argv is a valid command line ->
schemaPath := the SCHEMA argument
fileList := list of FILE arguments
else ->
sys.stderr +:= error message
stop execution]
schemaPath, fileList = checkArgs()

Next we try to build a RelaxValidator instance from the specified schema.
rnck

#-- 2 --
[if schemaPath names a readable, valid .rng schema ->
return a RelaxValidator that validates against that schema
else if (schemaPath, with .rnc appended if there is no
extension, names a readable, valid .rnc schema) ->
if the corresponding .rng schema is readable, valid, and
newer than the .rnc

53Python XML processing with lxmlZoological Data Processing

return a RelaxValidator that validates against the
.rng schema
else if (we have write access to the corresponding .rng
schema) and (trang is locally installed) ->
corresponding .rng schema := trang's translation of
the .rnc schema into .rng
return a RelaxValidator that validates against
translated schema
else ->
sys.stderr +:= error message
stop execution]
validator = rnc_validate.RelaxValidator(schemaPath)

For the logic that validates one XML file against our validator, see Section 16.7, “rnck: validate-
File()” (p. 56).

rnck

#-- 3 --
[sys.stderr +:= messages about any files from (fileList) that
are unreadable or not valid against (validator)]
for fileName in fileList:

validateFile(validator, fileName)

16.3. rnck: checkArgs()
Argument processing is pretty basic. There must be at least two positional arguments; the first is the
schema path, the rest are files to be checked.

rnck

- - - c h e c k A r g s

def checkArgs():
'''Check the command line arguments.

[if sys.argv is a valid command line ->
return (the SCHEMA argument, a list of the FILE arguments)

else ->
sys.stderr +:= error message
stop execution]

'''
#-- 1 --
argList = sys.argv[1:]

For the usage message, see Section 16.4, “rnck: usage()” (p. 55).
rnck

#-- 2 --
if len(argList) < 2:

usage("You must supply at least two arguments.")
else:

schemaPath, fileList = argList[0], argList[1:]

#-- 3 --
return (schemaPath, fileList)

Zoological Data ProcessingPython XML processing with lxml54

16.4. rnck: usage()
See Section 16.5, “rnck: fatal()” (p. 55).

rnck

- - - u s a g e

def usage(*L) :
'''Write an error message and terminate.

[L is a list of strings ->
sys.stderr +:= (concatenation of elements of L)
stop execution]

'''
fatal("*** Usage:\n"

"*** %s SCHEMA FILE ...\n"
"*** %s" %
(sys.argv[0], ''.join(L)))

raise SystemExit

16.5. rnck: fatal()
Deliver the death poem, then commit seppuku. See also Section 16.6, “rnck: message()” (p. 55).

rnck

- - - f a t a l

def fatal(*L):
'''Write an error message and terminate.

[L is a list of strings ->
sys.stderr +:= concatenation of elements of L
stop execution]

'''
message(*L)
raise SystemExit

16.6. rnck: message()
rnck

- - - m e s s a g e

def message(*L):
'''Write an error message to stderr.

[L is a list of strings ->
sys.stderr +:= concatenation of elements of L

'''
print(''.join(L), file=sys.stderr)

55Python XML processing with lxmlZoological Data Processing

16.7. rnck: validateFile()
rnck

- - - v a l i d a t e F i l e

def validateFile(validator, fileName):
'''Validate one file against the schema.

[validator is an rnc_validate.RelaxValidator instance ->
if fileName is readable and valid against validator ->
I

else ->
sys.stderr +:= error message]

'''
#-- 1 --
[if fileName names a readable, well-formed XML file ->
doc := an et.ElementTree instance representing that file
else ->
sys.stderr +:= error message
return]
try:

doc = et.parse(fileName)
except et.XMLSyntaxError, details:

message("*** File '%s' not well-formed: %s" %
(fileName, str(details)))

return
except IOError, details:

message("*** Can't read file '%s': %s" %
(fileName, str(details)))

return

#-- 2 --
[if doc is valid against validator ->
I
else ->
sys.stdout +:= failure report]
try:

validator.validate(doc)
except rnc_validate.RelaxException, details:

message("*** File '%s' is not valid:\n%s" %
(fileName, details))

16.8. rnck: Epilogue
rnck

- - - - - E p i l o g u e

if __name__ == "__main__":
main()

Zoological Data ProcessingPython XML processing with lxml56

